Questions

1. If we have the last census population, migration, births and deaths data for a region in a given period, the population at the time t can be estimated by the formula as:

(A) $\hat{P}_t = P_0 + (B-D) + (I-E)$ (B) $\hat{P}_t = (B-D) + (I-E)$ (C) $\hat{P}_t = P_0 \{(B-D) + (I-E)\}$ (D) None of the above

2. Having known the last census population 'P0' and growth rate 'r', the population after n years based on compound interest formula will be:

(A) $\widehat{P}_t = P_0 (1+r)^n$	(B) $\widehat{P}_t = P_0 (1+n)^r$
(C) $\hat{P}_t = P_0/(1+r)^n$	(D) $\widehat{P}_t = P/(1+r)^n$

- 3. Net reproduction rate is more viable than gross reproduction rate because:
 - (A) It takes into account fertility rates as well as mortality rates.
 - (B) It makes use of life tables.
 - (C) It utilizes survival rate
 - $(D) \, \text{All the above.} \\$
- 4. Construction of life table is based on the assumption that:

(A) Age specific death rates are constant at all ages.

- (B) Death rates are uniformly distributed between two birth days.
- (C) Mortality rates are same for male and female population.
- (D) All the above.
- 5. Let X=R with usual distance function d(x,y)=|x-y|, let E={y \in R| 2 < y < 5}, then following is the interior point of E

(A) 2 and 5	(B) 2.5 and 5
(C) 3 and 4	(D) 1.5 and 2.5

 Let X=R with usual distance function d(x,y)=|x-y|, let E = {1/n | n =1,2,3------}, then the limit point of E is

(A) 1 (B) ½ (C) 1/n (D) 0

7. A finite set _____

(A) Has no limit points

- (B) Is compact
- $\left(C\right)$ Both (A) and (B)
- $(D) \, \text{None of these} \,$

8. The function $f(x) = 1/(1-x^2)$ can be represented in power series as:

(A) $\sum_{n=0}^{\infty} x^n$ (B) $\sum_{n=0}^{\infty} x^{2n}$ (C) $\sum_{n=0}^{\infty} x^{n+1}$ (D) $\sum_{n=0}^{\infty} x^{n+2}$

- 9. Which of the following statements is not true?
 - (A) A convergent sequence is always bounded.
 - (B) A sequence which diverges to ∞ , must be bounded below.
 - (C) An oscillating sequence is always bounded.
 - (D) A sequence which diverges to ∞ , must be bounded above.
- 10. Which of the following sequences $\{S_n\}_{n=1}^{\infty}$ diverges to $-\infty$?

(A)
$$S_n = e^{\frac{1}{n}}, n \in I$$
 (B) $S_n = -n^2$, $n \in I$

(C)
$$S_n = e^n$$
 , $n \in I$ (D) $S_n = \frac{1}{n}$, $n \in I$

11. Let L be the greatest lower bound for set A. Consider the following two statements. S_1 : L must be lower bound for A.

 S_2 : no number greater than L is a lower bound for A.

- (A) Both S_1 and S_2 are true.
- (B) Only S_1 is true.
- (C) Only S₂ is true.
- (D) None of S_1 and S_2 is true.
- 12. A reduced Latin square (or a Latin square in standard form) is one in which
 - (A) Treatments in the first row are arranged in alphabetic order
 - (B) Treatments in the first column are arranged in alphabetic order
 - (C) Treatments in the first row and first column are arranged in alphabetic order
 - (D) None of the above
- 13. If interaction AB is confounded in a 2³ factorial experiment , the entries of two blocks in a replication will be

(A) b,ac,bc,a and (1) ,ab,c ,abc	(B) (1),ab,a,b and abc,c,bc,ac
(C) (1),ab,ac,bc and abc,a,b,c	(D) None of the above

14. While conducting a one way ANOVA, comparing five treatments with ten observations per treatment, let SST = 42.41 and MSE = 6.34. What is the value of F?

(A) 42.41 (B) 6.34 (C) 1.67 (D) 0.74

- 15. When a problem matrix does not contain identity matrix, we have to use
 (A) Dual complex method
 (B) Artificial basis technique
 (C) Sensitivity analysis
 (D) None of the above
- 16. For a random variable having a normal distribution, the ratio of its range to the standard deviation is called _____
 - (A) Relative range (B) Absolute range (C) Major range (D) Minor range

17. In acceptance sampling, when there is a finite probability that the lot may be accepted even if the quality is not really good, is called

(A) Consumer's risk	(B) Producer's risk
(C) Operator's risk	(D) Owner's risk

- 18. The decision about the acceptance or rejection of a lot through a single sampling plan is reached by considering
 - (A) Number of defectives in the sample and acceptance number
 - (B) Rejecting quality level
 - (C) The acceptance quality level
 - (D) Average outgoing quality limit
- 19. Two biased coins C_1 and C_2 have probability of getting heads $\frac{2}{3}$ and $\frac{3}{4}$ respectively, when tossed. If both coins are tossed independently two times each, then the probability of getting exactly two heads out of these four tosses is

(A)
$$\frac{1}{4}$$
 (B) $\frac{37}{144}$ (C) $\frac{41}{144}$ (D) $\frac{49}{144}$

20. Let X be a random variable with distribution function

$$F(x) = \begin{cases} 0, & x < 0\\ \frac{1}{4} + \frac{4x - x^2}{8}, 0 \le x < 2\\ 1, & x \ge 2 \end{cases}$$

Then P(X = 0) + P(X = 1.5) + P(X = 2) equals

(A)
$$\frac{1}{4}$$
 (B) $\frac{3}{8}$ (C) $\frac{5}{8}$ (D) $\frac{1}{2}$

21. A non negative continuous random variable X has pdf

$$f(x) = \frac{1}{8 \Gamma(3)} e^{-x/2} x^2, x > 0.$$

Then E(X) and Var(X) are respectively

- (A) 6, 6 (B) 6, 12
- (C) 6, 18 (D) 8, 16.
- 22. Let the MGF of a r.v. X is $M_X(t) = e^{2t+8t^2}$, t \in R. Then P[X<2] is

(A) 0.5	(B) 0
(C) 0.25	(D) 0.75.

- 23. Let the MGF of r.v. X is $M_X(t) = (1 2t)^{-8}$, t<¹/₂. Then the distribution of X is
 - (A) χ_2^2 (B) χ_4^2 (C) χ_8^2 (D) χ_{16}^2 .

- 24. Let *m* be the number of occurrences of an event *A* in *n* independent trials which is denoted as $P_n(m)$, where probability of occurrence of *A* in each of these trials is p, 0 . If*n*is very large and*p* $differs much from 0.5, then which of the following law gives better approximation of <math>P_n(m)$?
 - (A) Binomial probability law
 - (B) Poisson probability law
 - (C) DeMoivre-Laplace Local Limit Theorem
 - (D) DeMoivre-Laplace Integral Limit Theorem
- 25. If the sequence of random variables Z_1 , Z_2 , ..., Z_n is such that it satisfies

 $\frac{1}{n}\sum_{k=1}^{n}Z_{k} - \frac{1}{n}\sum_{k=1}^{n}E(Z_{k}) \to 0 \text{ with probability } 1 \text{ as } n \to \infty, \text{ then it is said to obey}$

(A) strong law of large numbers

- (B) weak law of large numbers
- $\left(C\right)$ the property of convergence with probability 1
- (D) none of the above
- 26. Match the characteristic functions against the correct probability distribution (*a* and *b* are parameters):

(i)	Binomial	(a)	$e^{itb} - e^{ita}$
			it(b-a)
(ii)	Exponential	(b)	$(1-2it)^{-a/2}$
(iii)	Normal	(c)	$\left(1-b+be^{it}\right)^a$
(iv)	Uniform	(d)	$(1 - ita^{-1})^{-1}$
		(e)	$e^{ita-rac{1}{2}t^2b^2}$

(A) (i) - (a) , (ii) - (b) , (iii) - (e) , (iv) - (c)

- (B) (i) (e) , (ii) (d) , (iii) (c) , (iv) (a)
- (C) (i) (c) , (ii) (d) , (iii) (e) , (iv) (a)
- (D) (i) (c) , (ii) (b) , (iii) (e) , (iv) (a)

27. Let $M = \begin{bmatrix} \frac{1}{4} & \frac{3}{4} \\ \frac{3}{5} & \frac{2}{5} \end{bmatrix}$, If *I* is the 2x2 identity matrix and 0 is the 2x2 zero matrix, then

(A) $20 M^2 - 13 M + 7 I = 0$ (B) $20 M^2 - 13 M - 7 I = 0$ (C) $20 M^2 + 13 M + 7 I = 0$ (D) $20 M^2 + 13 M - 7 I = 0$ 28. Which of the following is a centering matrix of order 3?

$$(A) \begin{bmatrix} \frac{1}{3} & \frac{2}{3} & \frac{2}{3} \\ \frac{2}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & \frac{2}{3} \end{bmatrix} \qquad (B) \begin{bmatrix} -\frac{1}{3} & \frac{2}{3} & \frac{2}{3} \\ \frac{2}{3} & -\frac{1}{3} & \frac{2}{3} \\ \frac{2}{3} & \frac{2}{3} & \frac{2}{3} \\ \frac{2}{3} & \frac{2}{3} & \frac{2}{3} \\ \frac{2}{3} & \frac{2}{3} & \frac{2}{3} \end{bmatrix} \\ (C) \begin{bmatrix} \frac{1}{3} & -\frac{2}{3} & -\frac{2}{3} \\ -\frac{2}{3} & \frac{1}{3} & -\frac{2}{3} \\ -\frac{2}{3} & -\frac{2}{3} & \frac{1}{3} \end{bmatrix} \qquad (D) \begin{bmatrix} \frac{2}{3} & -\frac{1}{3} & -\frac{1}{3} \\ -\frac{1}{3} & \frac{2}{3} & -\frac{1}{3} \\ -\frac{1}{3} & -\frac{1}{3} & \frac{2}{3} \end{bmatrix}$$

29. Let T be a linear transformation of $V_n(\mathcal{F})$ represented by matrix A relative to the basis $\alpha_1, \alpha_2, ..., \alpha_n$ and represented by matrix B relative to the basis $\beta_1, \beta_2, ..., \beta_n$. Then matrices A and B are

(A) non singular (B) congruent (C) similar (D) orthogonally similar

- 30. The variance covariance matrix of a random vector is always
 (A) Positive definite
 (B) Positive semidefinite
 (C) negative definite
 (D) negative semidefinite.
- 31. Let X be a discrete random variable with pmf

$$P(X = x) = \begin{cases} \frac{1}{\theta}, & x = 1, 2, 3, \dots \\ 0, & Otherwise \end{cases}$$

Where $\theta \in \{20, 40\}$ is the unknown parameter. Consider testing $H_0: \theta = 40$ against $H_1: \theta = 20$ at level $\alpha = 0.1$. Then the most powerful test rejects H_0 if and only if

(A)
$$X \le 4$$
 (B) $X > 4$ (C) $X \ge 3$ (D) $X < 3$.

32. Let α and η denote respectively Probability of Type I error and power of a MP test. Then which of the following is true?

(A) $\alpha = \eta$ (B) $\alpha \leq \eta$ (C) $\alpha > \eta$ (D) nothing can be said.

- 33. Let X₁, X₂, ..., X_n be a random sample from N(μ , σ^2), both μ and σ^2 unknown. The critical region for testing $H_0: \mu = \mu_0$ against $H_1: \mu \neq \mu_0$ at level α is
 - (A) $\bar{X} \ge \mu_0 + \frac{S}{\sqrt{n}} t_{n-1,\alpha}$ (B) $\bar{X} \le \mu_0 + \frac{S}{\sqrt{n}} t_{n-1,1-\alpha}$ (C) $\left| \frac{\bar{X} - \mu_0}{s_{/\sqrt{n}}} \right| \ge t_{n-1,\alpha_{/2}}$ (D) $\left| \frac{\bar{X} - \mu_0}{s_{/\sqrt{n}}} \right| \le t_{n-1,\alpha_{/2}}$.

34. Let X_1, X_2, X_3 be a random sample from B(1, p) distribution. Which of the following is not a sufficient statistic?

(A) $X_1 + X_2 + X_3$ (B) (X_1, X_2, X_3) (C) $(X_1, X_2 + X_3)$ (D) $X_1 - X_2 + X_3$.

35. Let X_1, X_2, X_3 be a random sample from P(λ). Which of the following estimators has the smallest variance?

(A)
$$\frac{X_1 + X_2 + 4X_3}{6}$$
 (B) $\frac{X_1 + X_2 + X_3}{3}$ (C) $\frac{X_1 + 3X_2 + X_3}{5}$ (D) $\frac{2X_1 + X_2 + 2X_3}{5}$.

36. In the Gauss- Markoff set up, with usual notations suppose matrix $X = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix}$. Then

which of the following is correct?

- (A) no parametric function is estimable
- (B) All parametric functions are estimable
- (C) Only some parametric functions are estimable
- (D) nothing can be said.
- 37. A sequence of estimators $\{T_n, n \ge 1\}$ is said to be consistent for θ if

(A) $P[|T_n - \theta| < \varepsilon] \ge 1 - \eta$ (B) $P[|T_n - \theta| < \varepsilon] < \eta$

(C) $P[|T_n - \theta| > \varepsilon] \ge 1-\eta$ (D) $P[|T_n - \theta| > \varepsilon] > \eta$.

38. In usual notations (matrix form) the LSE of $\underline{\beta}$ in the model $\underline{Y} = X\underline{\beta} + \underline{\varepsilon}$ is given by (A) $\underline{b} = (X'X)^{-1}\underline{Y}$ (B) $\underline{b} = (X'X)^{-1}X$ (C) $\underline{b} = (X'X)^{-1}X\underline{Y}$ (D) $\underline{b} = (X'X)^{-1}X'\underline{Y}$

39. In the usual regression equation Z_i² which are the functions of X_i's, for Z₁, Z₂, Z₃, Z₄, Z₅ total number of possible equations would be
 (A) 5
 (B) 10
 (C) 32
 (D) 64

40. Dummy variables classify the data into

(A) Inclusive categories (B) Mutually exclusive categories

- (C) Qualitative categories (D) Quantitative categories
- 41. In the stepwise regression procedure, a predictor variable is included in the model based on the outcome of

(A) F test (B) Partial F test (C) χ^2 test (D) t test

- 42. The Gompertz curve is generally
 - (A) U shaped (B) S shaped (C) Exponentially damped (D) Fluctuating
- 43. If there is a trend present in the series and the variance appears to increase with mean, then which of the following transformations is used to stabilize the variance?
 - (A) Inverse (B) Logarithmic (C) Square root (D) Trigonometric

44. With which characteristic movement of a time series would you associate the series on Production of groundnut?

(A) Seasonal (B) Cyclic (C) Long term trend (D) Short term trend

45. Suppose there is a population of 500 students attending a school in Mumbai City. If we divided them by gender and then took a random sample males and females separately, the variable on which we divided the population is called the _____

- (A) Independent variable (B) Dependent variable
- (C) Stratification variable (D) Sampling variable
- 46. The discrepancy in a sample estimate due to miscalculation is termed as

(A) Human error	(B) Formula Error
(C) Sampling error	(D) Non-sampling error

- 47. Which of the following statements is true about the number of strata?
 - (A) Less the number of strata, better it is.
 - (B) More the number of strata, better it is.
 - (C) Number of strata doesn't influence the quality of results
 - (D) None of the above
- 48. In which year National Statistical commission was established?
 - (A) 2007 (B) 2005 (C) 2003 (D) 2002
- 49. Let $X_1, X_2, ..., X_n$ be a random sample from U(0, θ). The expected value of nth order statistic $X_{(n)}$ is _____

(A)
$$\frac{n}{n+1}\theta$$
 (B) $\frac{n+1}{n}\theta$ (C) $\frac{n}{n-1}\theta$ (D) $\frac{n-1}{n}\theta$

- 50. Suppose a random sample of size n is drawn from an exponential distribution with mean 1/ θ . Then for range R, $E(e^{-\theta R})$ is ____
 - (A) $\frac{1}{n+1}$ (B) $\frac{1}{n}$ (C) $\frac{\theta}{n+1}$ (D) $\frac{\theta}{n}$

-0-0-0-0-0-

Answer Key

Question	Answer								
1	А	11	А	21	В	31	А	41	В
2	С	12	С	22	Α	32	В	42	В
3	А	13	А	23	D	33	С	43	В
4	D	14	С	24	В	34	D	44	А
5	С	15	В	25	А	35	В	45	С
6	D	16	А	26	С	36	В	46	D
7	С	17	А	27	A	37	А	47	В
8	В	18	А	28	D	38	D	48	В
9	С	19	В	29	С	39	С	49	А
10	С	20	D	30	В	40	В	50	В